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Modified Lattice Boltzmann method for compressible fluid simulations
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A modified lattice Boltzmann algorithm is shown to have much better stability to growing temperature
perturbations, when compared with the standard lattice Boltzmann algorithm. The damping rates of long-
wavelength waves, which determine stability, are derived using a collisional equilibrium distribution function
which has the property that the Euler equations are obtained exactly in the limit of zero time step. Using this
equilibrium distribution function, we show that our algorithm has inherent positive hyperviscosity and hyper-
diffusivity, for very small values of viscosity and thermal diffusivity, which are lacking in the standard
algorithm. Short-wavelength modes are shown to be stable for temperatures greater than a lower limit. Results
from a computer code are used to compare these algorithms, and to confirm the damping rate predictions made
analytically. Finite amplitude sound waves in the simulated fluid steepen, as expected from gas dynamic
theory.
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I. INTRODUCTION

The lattice Boltzmann method@1# has the potential of
providing fast algorithms for fluid simulations, but it tends
be numerically unstable when temperature variations are
lowed @2–5#. This is because of the lack of an H theorem f
the thermal lattice Boltzmann method@6#. In this paper, we
present a modification of the standard lattice Boltzma
~LB! algorithm, which we demonstrate to be much mo
stable in tests using a computer code. Our analysis of
algorithm in terms of wave damping shows why this is e
pected. Our algorithm uses overrelaxation in the advec
step, while the standard algorithm uses overrelaxation in
collision step@7#. We refer to our algorithm as the AOR
algorithm ~for advection with overrelaxation!. Advection
with overrelaxation is implemented using a two time adv
tion scheme, with the relative weights of the two times d
termined by a parameter. With the correct choice of the ov
relaxation parameter, the second-order dissipa
coefficients~viscosity and thermal diffusivity! can be made
arbitrarily small, while maintaining positive fourth-order di
sipation coefficients~hyperviscosity and hyperdiffusivity!.
By contrast, in the LB algorithm, the fourth-order dissipati
coefficients also go to zero when the second-order co
cients go to zero. The improved stability is clearest when
temperature is allowed to vary because the thermal m
~defined in Sec. VIII! tends to be less stable than she
modes, but is stabilized by hyperdiffusivity. Shor
wavelength modes generated by nonlinearity are thus ef
tively suppressed with the AOR algorithm.

In lattice-based fluid simulations, fluid variables are tim
advanced using a picture of molecules with velocities wh
lie on a lattice, and which move between points on a spa
lattice and then collide with each other. The fluid variab
are sums, over velocity lattice points, of the populations
these velocities, appropriately weighted. The basic prem
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@1# is that the complexity of hydrodynamics can be w
described by a drastically simplified version of molecu
dynamics.

The distribution function f is defined such tha
f (xW ,cW ,t)d3x is the number of molecules in the spatial volum
d3x at positionxW , with velocitycW , at timet. The velocitycW is
one of the points of a lattice in velocity space; we shall u
the four-dimensional face-centered hypercube lattice,
cause of its symmetry properties@8#. After a time interval
Dt, a particle at positionxW will move to xW1cWDt, which
defines a spatial lattice. The fluid variables—the densityr,
the flow velocity uW , and the average energy per partic
«—are defined as moments of the distribution functio
which are sums over the lattice velocities:

r5(
cW

f , ruW 5(
cW

cW f , r«5(
cW

e~cW ! f ~1!

wheree(cW )5c2/2 is the energy of a molecule with velocit
cW . ~The particle mass is chosen to be 1 in our units.! The
simulation follows the fluid variables in time, for given in
tial and boundary conditions, by time advancing the distrib
tion function f and evaluating these moments. Advancingf
consists basically of particle advection and collisional equ
bration.

Fluid equations are obtained from the AOR algorithm
using an expansion in the discreteness. Using an approp
choice of the equilibrium distribution function, given in Se
IV the fluid equations are shown to be the Euler equatio
for a perfect fluid, plus discretization errors. These errors
shown to cause wave damping, and are identified with v
cosity, thermal diffusivity, etc. Although the leading-ord
fluid equations have the property of Gallilean invariance,
same is not true for the discretization errors. In fact, the w
damping rates become negative for flow speeds larger
critical values, as discussed in Secs. VI and VIII, and t
limits the allowable flow speeds.

A complete discussion of the stability properties of t
AOR algorithm would need to include all of the wave ve
tors allowed on the spatial lattice, not just the longest wa

lin
©2001 The American Physical Society12-1



r
e
e

-
tri
ua
id
d

re
e

th

F

n

an
F

q

of

ze
ti

ex

of

he
ed
of

.

tum

x-

HINTON, ROSENBLUTH, WONG, LIN-LIU, AND MILLER PHYSICAL REVIEW E63 061212
lengths. A first step in this direction is taken in Sec. X, whe
the stability of the shortest allowable waves is consider
For a special case, stability is shown to restrict the allow
temperature range somewhat.

II. ADVECTION WITH OVERRELAXATION

Given the fluid variables~density, flow velocity, and en
ergy density! at two previous times, and assuming the dis
bution function~DF! at the prevous times has been set eq
to the collisional equilibrium DF determined by the flu
variables at those times, the fluid variables are determine
the present time by using the following three steps.

~1! The advected DF is obtained from the DF at the p
vious times consistent with advection of particles from oth
spatial positions.

~2! The fluid variables are obtained as moments of
advected DF.

~3! The new DF is given by the collisional equilibrium D
determined by the fluid variables.

The advected DF is given by

f * ~xW ,cW ,t !5a f ~xW2cWDt,cW ,t2Dt !

1~12a! f ~xW22cWDt,cW ,t22Dt !, ~2!

wherea is the overrelaxation parameter. The result of ma
collisions is assumed to be that the DF at timet is equal to
the equilibrium DF

f ~xW ,cW ,t !5 f eq~xW ,cW ,t !, ~3!

where f eq(xW ,cW ,t) is given by an assumed function ofcW cho-
sen such that the particle density, momentum density,
energy density are the same as given by the advected D

(
cW

$1,cW ,e~cW !% f eq5(
cW

$1,cW ,e~cW !% f * ~4!

We have written a computer code which implements E
~1!, ~2!, and~3!, and the results will be given below.

III. FLUID LIMIT

As with a real gas, we expect fluid behavior in the limit
small time intervals between collisions. The velocitiescW are
now assumed to be normalized, so that the smallest non
component along any coordinate axis is unity. The spa
grid separation is thenDx5Dt. Distance is normalized to
the length of the simulation. We assume thatDt is small
enough for good resolution of the flows of interest, and
pand the advected DF in a Taylor series; from Eq.~2!, we
find

f * . f 2~22a!DtS ]

]t
1cW•¹W D f

1
1

2
~423a!Dt2S ]

]t
1cW•¹W D 2

f , ~5!

where f 5 f eq is the collisional equilibrium DF.
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Denoting one of the quantities$1,cW ,e(cW )% by c, we mul-
tiply this equation byc and sum over lattice velocitiescW ,
using Eqs.~3! and ~4!, and obtain

~22a!Dt(
cW

cS ]

]t
1cW•¹W D f 2

1

2
~423a!Dt2

3(
cW

cS ]

]t
1cW•¹W D 2

f 5(
cW

c~ f 2 f * !50. ~6!

We thus obtain fluid equations, with discretization errors
orderDt:

]

]t S (cW
c f D 1¹W •S (

cW
cWc f D

5
~223a/2!

~22a!
Dt(

cW
cS ]

]t
1cW•¹W D 2

f . ~7!

The first set of sums on the left-hand side of Eq.~7!
consists of the lowest moments of the equilibrium DF, t
density, flow velocity, and energy density, which are defin
by Eq. ~1!. The second set of sums on the left hand side
Eq. ~7! includes the momentum flux tensor

Pi j 5(
cW

cicj f ~8!

and the energy flux vector

rz i5(
cW

cie~cW ! f . ~9!

The traceless momentum flux is defined by

rp i j 5(
cW

S cicj2
c2

4
d i j D f ~10!

~the trace ofd i j is 4, in the four-dimensional velocity space!
Thus the fluid equations obtained in the limitDt→0 are

]r

]t
1

]

]xm
~rum!50, ~11!

]~rui !

]t
1

]

]xi
~r«/2!1

]

]xm
~rp im!50, ~12!

]~r«!

]t
1

]

]xm
~rzm!50, ~13!

where we have used the fact that the trace of the momen
flux is Pmm52r«.

For later use, we give the result of carrying out the e
pansion inDt to higher order,

]

]t S (cW
c f D 1¹W •S (

cW
cWc f D . (

p52

4

bp(
cW

cS ]

]t
1cW•¹W D p

f ,

~14!

neglecting terms of orderDt4, where
2-2
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b25
~223a/2!

~22a!
Dt,

b352
~4/327a/6!

~22a!
Dt2, ~15!

b45
~2/325a/8!

~22a!
Dt3.

The O(Dt) discretization error is zero ifa5 4
3 , giving a

first-order accurate algorithm for the ideal fluid equatio
Alternatively, choosinga, 4

3 , the term proportional tob2
can be identified with viscous stress, giving a first-order
curate algorithm for the viscous fluid equations.~It is easily
shown that the error in the mass conservation equation i
orderDt2 in either case.!

Recalling thatf 5 f eq, it is now clear that the above fluid
equations will be identical to the ideal fluid equations in t
limit Dt→0, provided that we choose the equilibrium DF
have the correct momentum flux and energy flux mome
We define the temperatureT in terms of the average particl
energy by

«5
u2

2
1cvT, ~16!

wherecv is the specific heat at constant volume. Since
velocity space is four dimensional, there are four degree
freedom, and socv52. ~We use units where the gas consta
is equal to unity!. The correct specific heat for a diatomic g
(cv5 5

2 ) can be achieved by using a somewhat more com
cated equilibrium DF, which will be the subject of anoth
paper.

The traceless momentum flux and energy flux must h
the following forms, to be consistent with the ideal flu
equations:

p i j 5uiuj2
u2

4
d i j ~17!

and

z i5~«1T!ui . ~18!

By substituting into Eqs.~12! and ~13!, we obtain the ideal
fluid ~Euler! equations, as required.

IV. CHOICE OF EQUILIBRIUM DISTRIBUTION
FUNCTION

There are many choices for the equilibrium DF whi
satisfy the requirements of Eqs.~16!, ~17!, and ~18!. The
choice we make here is mainly to illustrate the stability pro
erties of the AOR algorithm, and to enable us to comp
with the LB algorithm. We choose an analytical form for th
equilibrium DF so that stability properties can be deriv
explicitly, by analytical means.

We write the equilibrium DF in the form

f eq~cW !5rF~c2/2!@11g~cW !#, ~19!
06121
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whereF is determined by minimizing the sum over lattic
velocitiesSF ln F subject to the constraints

(
cW

F51, (
cW

e~cW !F5« ~20!

andg is determined by minimizingSFg2 subject to the con-
straints

(
cW

Fg50, (
cW

e~cW !Fg50,

(
cW

Fgci5ui , (
cW

e~cW !Fgci5z i ,

and

(
cW

FgS cicj2
c2

4
d i j D5p i j ,

wherez i andp i j are assumed given and are related touW and
« by Eqs. ~18! and ~17!. This approach is similar to tha
discussed in Ref.@9#.

Our choice of the four-dimensional face-centered hyp
cubic ~FCHC! lattice simplifies the solution of these equ
tions because of its symmetry properties@8#. We shall use
the smallest number of energy states for which a solut
exists, which is three, i.e., energiesn[c2/250, 1, and 2.
Denoting bydn the number of velocities for an energyn, we
haved15d2524 for the FCHC lattice. The energy-1 veloc
ties are the permutations of~61, 61, 0, 0!. The energy-2
velocities are the permutations of~61, 61, 61, 61! and the
permutations of~62, 0, 0, 0!. The number ofn50 states
may be arbitrarily assigned, and we choosed056, which
also simplifies the solution.

We then obtain

F~0!5
1

4d0
~22«!2, F~1!5

1

2d1
«~22«!,

F~2!5
1

4d2
«2 ~21!

and

g~cW !B~n!cmum1D~n!cmzm1Acmcnpmn ~22!

~using the summation convention on repeated indice!,
where

B~n!5

8F S 11
3

2
« D2nS 11

1

2
« D G

«2~22«!
, ~23!

D~n!5

8Fn2S 11
1

2
« D G

«2~22«!
, ~24!

and
2-3
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A5
3

«S 11
1

2
« D . ~25!

The equilibrium exists for 0,«,2, that is, 0,T,1 and
u2,4(12T).

V. LONG-WAVELENGTH STABILITY

We now consider long-wavelength small amplitude pla
waves in a uniform gas, in order to identify the viscosi
hyperviscosity, thermal diffusivity, and hyperdiffusivit
from the wave damping. The conditions for numerical stab
ity to long-wavelength perturbations, which requires t
damping to be positive, will then be obtained.

We use the dissipative fluid equations@Eq. ~14!# with
f 5 f 01 f 1 , where f 05r0F0(11g0) corresponds to a time
independent uniform state withr5r0 , uW 5uW 0 , and«5«0 ,
which are all constants, and

f 15~r0F11r1F0!~11g0!1r0F0g1 , ~26!

which contains the perturbed fluid variablesr1 , uW 1 , and«1 .
The fluid perturbations are assumed to have the form
plane waves,}exp(ikW•xW2ivt), so that the perturbed fluid
equations become

(
cW

c~v2kW•cW ! f 15 (
p52

4

~2 i !p21bp(
cW

c~v2kW•cW !pf 1 ,

~27!

where thebp’s are given by Eq.~15!. We now choosec to
be one of the quantities$1,cW2uW 0 ,c2/22E0%. We determine
the wave frequencies in the formv5v11v21v31v4 ,
where v1}k, v2}b2k2, v3}b3k3, and v4}b4k4, where
the wave numberk is assumed to be small.

The discretization error terms on the right-hand side
this equation proportional tob2 represent viscosity and hea
conduction. We can choosea so thatb2 is small, which will
make the viscosity small. Choosing

a5 4
3 2e, ~28!

wheree!1, we have

b2. 9
4 eDt, b3. 1

3 Dt2, b4.2 1
4 Dt3. ~29!

The hyperviscosity~defined in Sec. VI! is proportional to
2b4 , which remains positive ase ~and the viscosity! goes to
zero. We formally takee in Eqs.~28! and~29! to be of order
Dt, so thatb2;b3;Dt2. Corrections to the frequencyv
proportional tob2 , b3 , andb4 can then be neglected on th
right hand side of Eq.~27!.

The solutions of Eq.~27! correspond to two transvers
waves, or shear waves, and three longitudinal waves. Of
latter, two are sound waves and the other is the ther
wave. The shear wave damping will determine the shear
cosity and hyperviscosity, and the thermal wave damp
will determine the thermal diffusivity and hyperdiffusivity
06121
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The sound wave dispersion relation will determine t
anomalous dispersion, proportional tob3 .

VI. VISCOSITY AND HYPERVISCOSITY

We now determine the damping of a shear wave, incl
ing terms of orderb2k2 ~viscosity! and terms of orderb4k4

~hyperviscosity!. Assumingu050, r150, k̂•uW 150, and«1

50, using c5cW•uW 1 in Eq. ~27!, the frequency isv5
2 in2k2, where

n25b2T0 . ~30!

By comparing with the damping rate obtained from t
Navier-Stokes equations, we identifyn2 with the kinematic
viscosity. Lattice symmetry ensures isotropy for this result
is independent of the direction of wave propagation. We n
thatn2 is positive fora,4/3. The frequency correction pro
portional tob3 is zero.

We now take the wave propagation direction to be alo
thex axis; then the frequency correction proportional tob4 is
v452 in4k4, where

n452b4T0 . ~31!

We definen4 as the hyperviscosity; there is no correspon
ing term in the Navier-Stokes equations. Lattice symme
does not ensure isotropy for this result, so it would depe
on the direction of wave propagation. We note thatn4 is
positive for 16/15,a,4/3.

When a shear wave is superimposed on a nonzero b
ground flow with velocityu0 , and we take the direction o
wave propagation to be the same as that of the flow,
obtain a flow-velocity-dependent modification of the visco
ity:

v52 in2k2F12
5

6

u0
2

T0
G . ~32!

For stability, we must therefore require

u0
2/T0,6/5. ~33!

This flow velocity dependence occurs because of the lat
and the particular equilibrium DF we used, and restricts
Mach number to be less than about 0.9, for numerical sta
ity. A more restrictive condition is obtained in Sec. VI
from the stability of thermal waves.

VII. LONGITUDINAL WAVES

Taking uW 0 , kW , and uW 1 to be in thex direction, Eq.~27!
becomes three equations for the perturbed fluid variab
U5(r1 /r0 ,u1 ,«1), of the form

MU5NU, ~34!

whereMU contains the nondissipative terms in the perturb
fluid equations andNU contains the dissipative terms, th
2-4
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MODIFIED LATTICE BOLTZMANN METHOD FOR . . . PHYSICAL REVIEW E 63 061212
right hand side of Eq.~27!. The lowest order frequencies
keeping only terms of orderk, are the roots of detM50,

v15ku0 ~ thermal wave! ~35!

or

v15ku06kcs ~sound waves!, ~36!

wherecs5(gT0)1/2 is the sound speed, with the specific he
ratio g[(cv11)/cv53/2. These results are independent
the direction of wave propagation, and do not depend on
choice of equilibrium DF. The right hand side of Eq.~34!
can be included using standard matrix perturbation theory
obtain the frequency corrections proportional tob2 , b3 , and
b4 .

VIII. THERMAL DIFFUSIVITY AND HYPERDIFFUSIVITY

Thermal waves have temperature and density pertu
tions which are such that the pressure perturbation is z
By considering the damping of thermal waves with ze
background flow, we findv52 ix2k2 where

x25 1
3 b2T0 . ~37!

By comparison with solutions of the Navier-Stokes equ
tions, we identify x2 as the thermal diffusivity. Since
n2 /x253, the thermal diffusivity is positive whenever th
viscosity is positive. This ratio, the Prandtl number, wou
be closer to realistic values for diatomic gases if a m
complicated equilibrium DF were used, which will be th
subject of another paper.

A perturbation calculation including theb3 andb4 terms
in Eq. ~34! can be carried out, as with the shear wave. T
frequency correction proportional tob3 is zero. The next
frequency correction isv452 ix4k4, wherex4 is defined as
the hyperdiffusivity and is given by

x452
5

3
b4T0~12T0!, ~38!

which is positive for 0,T0,1.
A thermal wave with nonzero background flow was a

considered. Although the expression for the flow-veloci
dependent thermal diffusivity is complicated, the result c
be stated simply. In order for the thermal diffusivity to b
positive, the Mach number must be less than a critical va
Mc , which depends on temperature. For 0.4,T0,0.8, for
example, the critical Mach number is in the range 0
,Mc,0.62.

IX. COMPARISON WITH THE LATTICE BOLTZMANN
METHOD

The LB algorithm is as follows: givenf (xW ,cW ,t2Dt), the
advected distribution function is

f * ~xW ,cW !5 f ~xW2cWDt,cW ,t2Dt !, ~39!

and the collision step is given by
06121
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f ~xW ,cW ,t !5v f eq1~12v! f * ~xW ,cW !, ~40!

wherev is the collisional overrelaxation parameter, andf eq

is the equilibrium DF.
We now show how the fluid equations are obtained us

the LB algorithm, and derive the parametersb2 , b3 , andb4
which determine the long-wavelength damping and stabil
Using Eq.~40!, a Taylor expansion off * yields

f . f eq1
~12v!

v (
p51

3
~2Dt !p

p!
dpf , ~41!

whered5]/]t1cW•¹W . By expandingf consistently in powers
of Dt, we obtain

f 5 f eq2
~12v!

v
Dtd feq1F ~12v!

2v
1

~12v!2

v2 GDt2d2f eq

2F ~12v!

6v
1

~12v!2

v2 1
~12v!3

v3 GDt3d3f eq, ~42!

neglecting terms of orderDt4.
We then obtain the fluid equations in the form given

Eq. ~14! with the definitions

b25S 1

v
2

1

2DDt, ~43!

b352F S 1

v
21D 2

1
1

v
2

5

6GDt2, ~44!

b45F S 1

v
21D 3

1
3

2 S 1

v
21D 2

1
7

12S 1

v
21D1

1

24GDt3,

~45!

which can be compared with Eq.~15!. From this point, the
long-wavelength analysis is the same for both algorithms
particular, the viscosity is proportional tob2 and the hyper-
viscosity is proportional to2b4 .

The viscosity is positive whenv,2. We can choosev so
that b2 and the viscosity are small: with

v522e, ~46!

wheree!1, we have

b2.eDt/4, b3.Dt2/6, b4.2eDt3/24. ~47!

Note that2b4 , which is proportional to the hyperviscosity
is also small when the viscosity is small. We take this as
indication that short waves generated by nonlinearity may
unstable using the LB algorithm.

This is the most important difference between the AO
and LB algorithms, sinceb4 does not go to zero whenb2
goes to zero using the AOR algorithm; see Eq.~29!. When
the viscosity and thermal diffusivity are very small, sho
wavelength numerical instabilitites will be effectivel
2-5
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damped using the AOR algorithm, but not using the LB
gorithm. Thus we expect the AOR algorithm to be nume
cally more stable than the LB algorithm, and this is evide
in the simulation results described in Sec. XI.

X. SHORT-WAVELENGTH STABILITY

We now consider the stability of the basic AOR alg
rithm, @Eqs. ~2!–~4!# to perturbations with short wave
lengths, assuming zero unperturbed flow,u050, and propa-
gation in thex direction. We usef 5 f 01 f 1 where f 0 is the
equilibrium DF for uniform density and temperature, a
f 1(x,cW ,tn)}ln exp(ikx). Stability requires

ulu<1. ~48!

Then we have

(
cW

c~ f 12 f 1* !50, ~49!

where the perturbed equilibrium DFf 1 is given by Eq.~26!
and the perturbed advected DF is

f 1* 5 f 1Fal exp~2 iQcx!1
~12a!

l2 exp~22iQcx!G ,
~50!

whereQ5kDx, Dx is the grid spacing, andcx is now nor-
malized toDx/Dt, whereDt5tn112tn is the time step. In
the following, we consider only the shortest possible wa
length,kDx5p.

For transverse modes,c5cy , and we obtain the disper
sion relation

l22aml1a2150, ~51!

where

m5(
cW

cy
2F0@B013T0D0#~21!cx5122T0 , ~52!

where B0 and D0 are given by Eqs.~23! and ~24! with E
5E0 . These modes are stable for 0<T0<1.

For longitudinal modes,l is again determined by Eq
~51!, where nowm is an eigenvalue of the matrixh, where

hi j 5(
cW

c igjF0~21!cx, ~53!

with g151, g25@B013T0D0#cx andg35(]F0 /]E0)/F0 .
The matrixh has a simple block structure: the eigenvalu

which correspond to nonzeror1 and E1 are stable for
0<T0<1. The eigenvalue which corresponds to nonzerou1
is stable ifT0> 1

3 . We thus obtain the temperature range
stability;

1/3<T0<1. ~54!
06121
-
-
t

-

s

r

XI. SIMULATION RESULTS USING THE LATTICE4 CODE

We have written a computer code,LATTICE4, which uses
the AOR algorithm and, optionally, the LB algorithm, i
order to verify the stability of the AOR algorithm and t
compare the algorithms. The initial conditions for the resu
given below correspond to the types of waves we have
cussed above. Periodic boundary conditions were used.
computed fluid moments are analyzed by fitting them
propagating waves, in order to determine the phase veloc
and damping rates. The Mach number is defined in term
the unperturbed flow velocity and temperature:M
[u0 /(gT0)1/2. The overrelaxation parametera was deter-
mined froma5(4/3)(12b2)/(12(2/3)b2), with b2 being
an input parameter. The spatial coordinates were normal
so thatDx51. For most of the cases discussed below,
wave number wask50.049, for which the wavelength i
equal to the length of the simulation,L5128.

FIG. 1. ~a! Transverse velocity as a function ofx for a shear
wave, using the AOR algorithm.~b! Time dependence of the am
plitude of the shear wave.~c! Temperature perturbation due to hea
ing by a shear wave.
2-6
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Figure 1 shows the transverse velocity and the temp
ture perturbation, obtained using the AOR algorithm, fo
sinusoidal shear flow convected by a uniform flow at Ma
0.2, for T050.4. We setb250, so the viscosity should b
zero; the wave is damped very slightly by hyperviscos
The initial rapid damping is due to the fact that only one p
time is available for the first time step, so the parametea
must be set equal to unity for the first step; a few time st
are required before the damping rate predicted for the A
algorithm is achieved. The very small temperature pertur
tion shown is due to hyperviscous heating. The dotted cur
show the fitted sinusoidal waves with twice the wave nu
ber, which is consistent with the heating being nonlinear
the velocity derivatives.

When the LB algorithm is used, shear waves are unsta
as shown in Fig. 2, for the same parameters used in Fig
The growing short wave temperature perturbations cause
shear wave to break up, starting at around the last t
shown.

Shear waves simulated using the AOR algorithm with d
ferent wave numbers were used to fit the damping rateG to

G~k!5n2k21n4k4 ~55!

for T050.4, M50.1 and two different values ofb2 . The
viscosity n2 and hyperviscosityn4 agree reasonably we
with the analytical results@Eqs. ~30!, ~31!, ~32!, and ~29!#.
For b250.10, the code results aren253.9631022 and n4
56.331022, to be compared with the analytical resultsn2
53.9531022 and n457.731022. For b250.01, the code
results aren253.9831023 andn459.231022, to be com-
pared with the analytical resultsn253.9531023 and n4
59.831022.

The viscosity was determined for different Mach num
bers, for two different values ofb2 , for T050.4. The Mach
number dependence agrees reasonably well with Eq.~32!.
For b250.10, we findn2(M )50.042(1.020.48M2), to be
compared with the analytical resultsn2(M )50.040(1.0
21.25M2). For b250.01, we find n2(M )50.0044(1.0
20.45M2), to be compared with the analytical resu
n2(M )50.004(1.021.25M2).

The damping rates for thermal waves convected by a
form flow at Mach 0.1 forT050.4, using the AOR algo-
rithm, were calculated for different values ofb2 , and fitted
to

G~k!5x2k21x4k4. ~56!

The thermal diffusivityx2 and hyperdiffusivityx4 agree rea-
sonably well with the analytical results neglecting finiteM
corrections@Eqs. ~37! and ~38!#. For b250.10, we findx2
51.231022 and x455.631022, to be compared with the
analytical resultsx251.331022 and x457.731022. For
b250.01, we findx251.131023 andx454.631022, to be
compared with the analytical resultsx251.331023 andx4
59.831022.

When the LB algorithm was used, thermal waves w
found to be generally unstable, with the temperature
density perturbations growing in time, especially when
06121
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thermal diffusivity is very small, and for shorter wave
lengths. This may be the cause of the instability whi
breaks up shear waves, when using the LB algorithm,
shown in Fig. 2. That is, the temperature perturbation gen
ated by heating is unstable.

The dispersion curves for small amplitude (r1 /r0
50.01) sound waves were determined for two different te
peraturesT050.35 and 0.45, and for flow velocitiesu0x5
20.15, 0.0, and 0.15, using the AOR algorithm. The wa
frequency was fitted to a function of the wave number,

v5ku01kcs1d3k3, ~57!

FIG. 2. ~a! Transverse velocity as a function ofx for a shear
wave, using the LB algorithm.~b! Time dependence of the ampl
tude of the shear wave.~c! Temperature perturbation due to heatin
by the shear wave, showing the growth of unstable sh
wavelength temperature perturbations for later times.
2-7
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wherecs5(gT0)1/2 is the sound speed, andd3 is the anoma-
lous dispersion coefficient. The measured specific heat r
is in excellent agreement with the theoretical valueg51.5,
with relative errors less than 1.631024. The anomalous dis
persion term proportional tod3 gives a very small correction
to the phase velocity, of about 331023. When the LB algo-
rithm was used, sound waves were found generally to
unstable, for most of the parameters used in these tests

As a further test of the realism of the simulation, a larg
amplitude (r1 /r050.1) sound wave propagating upstrea
through a uniform flow in the2x direction at Mach 0.2 with
temperatureT050.4 was used. It was found to steepen
expected from gas dynamic theory. An estimate of the ste
ening time,ts;1/(ku1), is about 250 time steps. In Fig. 3 w
show the density and temperature waves every 50 time s
as calculated by the code, for 250 time steps. The so
wave becomes very steep in that time, as expected from
dynamic theory.

XII. DISCUSSION AND CONCLUSIONS

We have presented an algorithm for compressible fl
simulations, which is a modification of the standard latt
Boltzmann algorithm@1#. We have used theLATTICE4 code
to demonstrate the greatly improved numerical stability
tained with our algorithm, compared with the standard al
rithm.

The AOR algorithm is similar to the Chapman-Ensk
method for deriving fluid equations from the Boltzman
equation. The Boltzmann equation is not used, however;
it is different from the LB method, which uses a discretiz
form of the Boltzmann equation. At each time step the
locity distribution function is set equal to the collision
equilibrium distribution function. With an appropriate choic
of the equilibrium distribution function, the fluid variable
evolve like solutions of the ideal fluid equations, except
the small effects of nonzero spatial and temporal discr

FIG. 3. Steepening of a large amplitude sound wave, show
~a! the density perturbation and~b! the temperature perturbation, a
functions of x for different times, up to the predicted steepeni
time.
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ness. The leading order effects of discreteness appear as
cosity and thermal diffusivity, and are similar to real g
dissipation effects, which are a result of nonzero mean f
path. The size of these dissipation effects is controlled by
advection overrelaxation parametera, and can be made ar
bitrarily small. Higher-order effects of discreteness appea
anomalous dispersion, and as hyperviscosity and hyperd
sivity, which have a stabilizing effect in the AOR algorithm
which is absent in the LB algorithm, when the viscosity a
thermal diffusivity are very small.

The damping rates of shear waves and thermal wave
the simulated fluid were used to determine viscosity, therm
diffusivity, hyperviscosity, and hyperdiffusivity. A reason
ably good agreement with analytical predictions was o
tained. Also, the anomalous dispersion of sound waves,
termined by measurements of the phase velocity, was sh
to be very small, and sound waves were shown to steepe
agreement with gas dynamic theory.

Lattice methods usually simulate a fluid with unrealis
properties resulting from the use of a lattice, i.e., lattice
tifacts @10#. In order not to confuse the stability issue, w
used a type of collisional equilibrium which has exactly ze
artifacts at the Euler level of description, i.e., the Euler eq
tions are obtained exactly in the limit of zero time step. Th
equilibrium has a simple analytical form which is possib
because of the choice of the four-dimensional face-cente
hypercubic~FCHC! lattice @8#, and which makes possibl
analytical predictions of stability to long wave perturbation

Some lack of realism remains, however, because of
choice of this equilibrium and the use of only three ener
states: the specific heat ratio is3

2, not 7
5, the viscosity and

thermal diffusivity decrease with increasing Mach numb
and the Prandtl number is unrealistically large. These un
alistic features can be eliminated by a different choice
collisional equilibrium and the inclusion of more energ
states, which will be the subject of a future paper.

The dependence of the wave damping rates, on ba
ground temperature, and flow velocity, is a consequence
the particular collisional equilibrium distribution functio
used. When this is given by Eqs.~19!, ~21!, and ~22!, the
requirement of positive wave damping~the most restrictive
being the thermal wave! requires the Mach number to be le
than 0.48, for temperatures in the range 0.4,T0,0.8, for
example. The temperature is only required to be in the ra
1/3<T0,1, for short wavelength stability.

Lattice methods should be fast, compared with conv
tional methods used in computational fluid dynamics, sin
they involve relatively simple operations. They are high
parallel when implemented using domain decomposition
massively parallel computers, because communication
tween processors is only required for particle advection n
subdomain boundaries. The codeLATTICE4, which was used
to obtain the simulation results given in this paper, uses
main decomposition and the message-passing inter
~MPI! @11#, a standard method for interprocessor commu
cation. Figure 3 was made using the data calculated o
Linux Beowulf cluster@12# using 16 processors.

g
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We believe that this technique would be useful in sim
lating compressible fluid flows under conditions where
effects of viscosity and thermal diffusivity are very sma
The most limiting feature is the limitation to Mach numbe
less than unity; this will be addressed in future work.
order to show that our algorithm is useful in real engineer
problems, it must, of course, be tested in engineering s
ut

ys

y

y

06121
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lations, not just the simple wave tests we have done. T
will be the focus of future work.
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