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Modified Lattice Boltzmann method for compressible fluid simulations
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A modified lattice Boltzmann algorithm is shown to have much better stability to growing temperature
perturbations, when compared with the standard lattice Boltzmann algorithm. The damping rates of long-
wavelength waves, which determine stability, are derived using a collisional equilibrium distribution function
which has the property that the Euler equations are obtained exactly in the limit of zero time step. Using this
equilibrium distribution function, we show that our algorithm has inherent positive hyperviscosity and hyper-
diffusivity, for very small values of viscosity and thermal diffusivity, which are lacking in the standard
algorithm. Short-wavelength modes are shown to be stable for temperatures greater than a lower limit. Results
from a computer code are used to compare these algorithms, and to confirm the damping rate predictions made
analytically. Finite amplitude sound waves in the simulated fluid steepen, as expected from gas dynamic
theory.
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[. INTRODUCTION [1] is that the complexity of hydrodynamics can be well
described by a drastically simplified version of molecular
The lattice Boltzmann methoffl] has the potential of dynamics.
providing fast algorithms for fluid simulations, but it tendsto ~ The distribution function f is defined such that
be numerically unstable when temperature variations are af(X ¢,t)d*x is the number of molecules in the spatial volume
lowed[2-5]. This is because of the lack of an H theorem for d° at positionx, with velocity ¢, at timet. The velocity¢ is
the thermal lattice Boltzmann meth¢6]. In this paper, we one of the points of a lattice in velocity space; we shall use
present a modification of the standard lattice Boltzmanrihe four-dimensional face-centered hypercube lattice, be-
(LB) algorithm, which we demonstrate to be much morecause of its symmetry properti¢8]. After a time interval
stable in tests using a computer code. Our analysis of thdt, a particle at positiork will move to X+ CAt, which
algorithm in terms of wave damping shows why this is ex-defines a spatial lattice. The fluid variables—the dengity
pected. Our algorithm uses overrelaxation in the advectioithe flow velocity G, and the average energy per particle
step, while the standard algorithm uses overrelaxation in the—are defined as moments of the distribution function,
collision step[7]. We refer to our algorithm as the AOR which are sums over the lattice velocities:
algorithm (for advection with overrelaxation Advection
with overrelaxation is implemented using a two time advec- - N -
tion scheme, with the rellaative weights ogf the two times de- p=2 1, pli=2 ¢f, pe=2 e(©f @
termined by a parameter. With the correct choice of the over-
relaxation parameter, the second-order dissipationvheree(¢)=c?/2 is the energy of a molecule with velocity
coefficients(viscosity and thermal diffusivifycan be made ¢&. (The particle mass is chosen to be 1 in our upifhe
arbitrarily small, while maintaining positive fourth-order dis- simulation follows the fluid variables in time, for given ini-
sipation coefficients(hyperviscosity and hyperdiffusivily  tial and boundary conditions, by time advancing the distribu-
By contrast, in the LB algorithm, the fourth-order dissipationtion functionf and evaluating these moments. Advancfng
coefficients also go to zero when the second-order coeffieonsists basically of particle advection and collisional equili-
cients go to zero. The improved stability is clearest when thération.
temperature is allowed to vary because the thermal mode Fluid equations are obtained from the AOR algorithm by
(defined in Sec. VIII tends to be less stable than shearusing an expansion in the discreteness. Using an appropriate
modes, but is stabilized by hyperdiffusivity. Short- choice of the equilibrium distribution function, given in Sec.
wavelength modes generated by nonlinearity are thus effedV the fluid equations are shown to be the Euler equations
tively suppressed with the AOR algorithm. for a perfect fluid, plus discretization errors. These errors are
In lattice-based fluid simulations, fluid variables are timeshown to cause wave damping, and are identified with vis-
advanced using a picture of molecules with velocities whichcosity, thermal diffusivity, etc. Although the leading-order
lie on a lattice, and which move between points on a spatiafluid equations have the property of Gallilean invariance, the
lattice and then collide with each other. The fluid variablessame is not true for the discretization errors. In fact, the wave
are sums, over velocity lattice points, of the populations ofdamping rates become negative for flow speeds larger than
these velocities, appropriately weighted. The basic premiseritical values, as discussed in Secs. VI and VI, and this
limits the allowable flow speeds.
A complete discussion of the stability properties of the
*Present address: Archimedes Technology Group, 5405 OberliAOR algorithm would need to include all of the wave vec-
Dr., San Diego, CA 92121. tors allowed on the spatial lattice, not just the longest wave-
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lengths. A first step in this direction is taken in Sec. X, where Denoting one of the quantitigs,¢,e(€)} by «, we mul-
the stability of the shortest allowable waves is consideredtiply this equation by and sum over lattice velocitieg,
For a special case, stability is shown to restrict the allowedising Eqs.(3) and(4), and obtain

temperature range somewhat.

P S\
(2— aAtZ oo+ 6.v)f—5(4—3a)m2

II. ADVECTION WITH OVERRELAXATION

Given the fluid variablegdensity, flow velocity, and en- 1%
ergy density at two previous times, and assuming the distri- X E ¥
bution function(DF) at the prevous times has been set equal

to the collisional equilibrium DF determined by the fluid We thus obtain fluid equations, with discretization errors of
variables at those times, the fluid variables are determined airderAt:

the present time by using the following three steps.

2
V f=2€ y(f—f,)=0. (6

(1) The advected DF is obtained from the DF at the pre- ﬁ 3 "
vious times consistent with advection of particles from other d (Ec: vt |+v g cyf )
spatial positions. )
(2) The fluid variables are obtained as moments of the ~ (2-3al2) AtE ) @
advected DF. T (2-a) l’b '
(3) The new DF is given by the collisional equilibrium DF
determined by the fluid variables. The first set of sums on the left-hand side of K@)
The advected DF is given by consists of the lowest moments of the equilibrium DF, the
density, flow velocity, and energy density, which are defined
f.(X,C,t)=af(X—CAt,C,t—At) by Eqg.(1). The second set of sums on the left hand side of
o Eq. (7) includes the momentum flux tensor
+(1—a)f(X—2C€At,E,t—2At), (2
wherea is the overrelaxation parameter. The result of many Pij =Z cicyf €))
collisions is assumed to be that the DF at titvis equal to ¢
the equilibrium DF and the energy flux vector
f(X,€,t)=1°4X,C,1), (3)
péi=2 cie(C)f. ©)

wheref®q{X,¢,t) is given by an assumed function éfcho-
sen such that the particle density, momentum density, ang,q traceless momentum flux is defined by

energy density are the same as given by the advected DF:
2

c
= cici—— & |f 10
S {16e(0}9=3 {1&e(O)}f, (@ P E( ©~ 7 ”) (10
(o} C
(the trace ofs;; is 4, in the four-dimensional velocity spage.

We have written a computer code which implements Eqs. 11, < the fiuid equations obtained in the limit—0 are

(1), (2), and(3), and the results will be given below.

6’/3
IIl. FLUID LIMIT Fra (pU )=0, (13)

As with a real gas, we expect fluid behavior in the limit of
small time intervals betwee_n collisions. The velocitieare a(pui) + i(ps/z)Jr i(pwm)=0, (12)
now assumed to be normalized, so that the smallest nonzero dat IX,,
component along any coordinate axis is unity. The spatial
grid separation is thehx=At. Distance is normalized to dpe) I 10 13
the length of the simulation. We assume tht is small ot axﬂ(pgﬂ T

enough for good resolution of the flows of interest, and ex-
pand the advected DF in a Taylor series; from B), we  where we have used the fact that the trace of the momentum
find flux is P,,=2pe.

For later use, we give the result of carrying out the ex-

£, —f—(2— a)At i-q-é.ﬁ)f pansion inAt to higher order,
at . .
J - J -
1 _\2 —(2 i |+v-| 2 c*wf)22 Bo w(—+6-v) f,
+ 2 (4—3a)At? —+6-v) f, (59 It\TE ¢ p=2’ " T\t
2 (14)
wheref =f®%is the collisional equilibrium DF. neglecting terms of ordekt*, where
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(2—3al2) whereF is determined by minimizing the sum over lattice
ZZW t, velocities> F In F subject to the constraints
BSI—MAIZ (15) 26 F=1, 26 e((_f)F:{-: (20)
(2—a) ’
andg is determined by minimizing Fg? subject to the con-
BAZM 3 straints
(2-a)

The O(At) discretization error is zero =3, giving a ; 9= 2 ¢)Fg=0,
first-order accurate algorithm for the ideal fluid equations.

Alternatively, choosinge<j, the term proportional tg3,

can be identified with viscous stress, giving a first-order ac- E Fgci=u;, > e(©FgG=4¢,
curate algorithm for the viscous fluid equatiofis.is easily ¢
shown that the error in the mass conservation equation is afnd

orderAt? in either case.

Recalling thatf =% it is now clear that the above fluid S c? _
equations will be identical to the ideal fluid equations in the Fg| cic— 4 8ij | = mij
limit At—0, provided that we choose the equilibrium DF to
have the correct momentum flux and energy flux momentswhere; and mr;; are assumed given and are relatedi tand
We define the temperatuiiein terms of the average particle ¢ by Egs.(18) and (17). This approach is similar to that
energy by discussed in Ref9].

Our choice of the four-dimensional face-centered hyper-
cubic (FCHOQ) lattice simplifies the solution of these equa-
tions because of its symmetry propert{@&. We shall use
the smallest number of energy states for which a solution
wherec, is the specific heat at constant volume. Since thexists, which is three, i.e., energies=c?/2=0, 1, and 2.
velocity space is four dimensional, there are four degrees dbenoting byd,, the number of velocities for an energywe
freedom, and se,=2. (We use units where the gas constanthaved, = d,=24 for the FCHC lattice. The energy-1 veloci-
is equal to unity. The correct specific heat for a diatomic gasties are the permutations ¢f-1, =1, 0, 0. The energy-2
(c,=3) can be achieved by using a somewhat more complivelocities are the permutations @f1, +1, =1, +1) and the
cated equilibrium DF, which will be the subject of another permutations of=2, 0, 0, 0. The number ofn=0 states
paper. may be arbitrarily assigned, and we choakg=6, which

The traceless momentum flux and energy flux must have|so simplifies the solution.
the following forms, to be consistent with the ideal fluid  \We then obtain

¢

u2

o= +c,T, (16)

equations:
1
u? FOO)=74- (2 e)?, F(L)=354- 8(2 &),
Uin - Z 5” (17)
and F(2)= ! g? 21
(2= g5 (21
fi=(e+Tu;. (18)
and
By substituting into Eqs(12) and(13), we obtain the ideal
fluid (Eulen equations, as required. g(¢)B(n)c,u,+D(n)c, ¢, +Ac,c,m,, (22
IV. CHOICE OF EQUILIBRIUM DISTRIBUTION (using the summation convention on repeated indjces
FUNCTION where
There are many choices for the equilibrium DF which a1+ 3 nl1s 1
satisfy the requirements of Eqél6), (17), and (18). The Z&|™n 2°f

choice we make here is mainly to illustrate the stability prop- B(n)= 22(2—¢) : (23
erties of the AOR algorithm, and to enable us to compare
with the LB algorithm. We choose an analytical form for the

1
equilibrium DF so that stability properties can be derived 8n—|1+=¢
explicitly, by analytical means. D(n)= —2 (24)
We write the equilibrium DF in the form e’(2—¢) '

fe4¢)=pF(c?2)[1+g(E)], (19 and
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3 The sound wave dispersion relation will determine the

A= ——F (25  anomalous dispersion, proportional £g.
1+ 58)

&€

VI. VISCOSITY AND HYPERVISCOSITY

The equilibrium exists for 8.e<2, that is, 6<T<1 and

) We now determine the damping of a shear wave, includ-
u <4(1-T).

ing terms of ordeiB,k? (viscosity and terms of ordep,k*
(hyperviscosity. Assuminguy=0, p;=0, k-G,;=0, ande;
=0, using y=c-G; in Eq. (27), the frequency isw=
We now consider long-wavelength small amplitude plane—ivzkz, where
waves in a uniform gas, in order to identify the viscosity,
hyperviscosity, thermal diffusivity, and hyperdiffusivity V= BaTo. (30
from the wave damping. The conditions for numerical stabil- ) ) ) ]
ity to long-wavelength perturbations, which requires theBy comparing with the damping rate obtained from the
damping to be positive, will then be obtained. Navier-Stokes equations, we identify with the kinematic
We use the dissipative fluid equatiofiq. (14)] with ~ Viscosity. Lattice symmetry ensures isotropy for this result: it
f=fo+f,, wherefo=poFo(1+9,) corresponds to a time- IS mdependenft of the direction of wave propaganq. We note
independent uniform state with=p,, G=U,, ande=e¢g, that v, is positive fora<4/3. The frequency correction pro-

V. LONG-WAVELENGTH STABILITY

which are all constants, and portional to 33 is zero. S
We now take the wave propagation direction to be along
f1=(poF1+p1Fo)(1+go)+ poFodi, (26)  thexaxis; then the frequency correction proportionapBipis
w,=—iv,k?* where
which contains the perturbed fluid variables, G;, ande;.
The fluid perturbations are assumed to have the form of va=—B4T0. (32
plane Waves,oceprIZ-i—iwt), so that the perturbed fluid ) . . )
equations become We definev, as the hyperviscosity; there is no correspond-

ing term in the Navier-Stokes equations. Lattice symmetry

4 does not ensure isotropy for this result, so it would depend
> Plo—k-6)f1=2 (=P8, w—k-€)Pfy, on the direction of wave propagation. We note thatis
¢ p=2 ¢ positive for 16/15 a<4/3.
(27) When a shear wave is superimposed on a nonzero back-

ground flow with velocityuy, and we take the direction of
wave propagation to be the same as that of the flow, we
obtain a flow-velocity-dependent modification of the viscos-

ity:

where theg,’s are given by Eq(15). We now choose) to
be one of the quantitiefl ¢— Gy,c%/2— &}. We determine
the wave frequencies in the form=w;+ w,+ w3+ w4,
where w;5K, w,B5k?, wz3xB3k3, and w,xB.k*, where
the wave numbek is assumed to be small.

2
The discretization error terms on the right-hand side of =—ipk? 1— > U ] 32
. . . . . « [¢) (32
this equation proportional t@, represent viscosity and heat 6 To
conduction. We can chooseso thatg, is small, which will . _
make the viscosity small. Choosing For stability, we must therefore require
a=%—¢ (28) u3/To<6/5. (33
wheree<1, we have This flow velocity dependence occurs because of the lattice
and the particular equilibrium DF we used, and restricts the
=2eAt, Bz=31At? B,=—3iAtS (299  Mach number to be less than about 0.9, for numerical stabil-

ity. A more restrictive condition is obtained in Sec. VI
The hyperviscosity(defined in Sec. VJl is proportional to  from the stability of thermal waves.
— B4, which remains positive as(and the viscositygoes to
zero. We formally takes in Egs.(28) and(29) to be of order VIl. LONGITUDINAL WAVES
At, so thatB,~ B3~ At?. Corrections to the frequency
proportional toB,, B3, andg, can then be neglected onthe  Taking Gy, k, and i to be in thex direction, Eq.(27)
right hand side of Eq(27). becomes three equations for the perturbed fluid variables

The solutions of Eq(27) correspond to two transverse U=(p,/pg,u;,&;), of the form

waves, or shear waves, and three longitudinal waves. Of the
latter, two are sound waves and the other is the thermal MU=NU, (34
wave. The shear wave damping will determine the shear vis-
cosity and hyperviscosity, and the thermal wave dampingvhereMU contains the nondissipative terms in the perturbed
will determine the thermal diffusivity and hyperdiffusivity. fluid equations andNU contains the dissipative terms, the
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right hand side of Eq(27). The lowest order frequencies, f(X,E1)=wf®H (1—w)f, (X,E), (40)
keeping only terms of ordek, are the roots of déf1=0,
wherew is the collisional overrelaxation parameter, &ié
is the equilibrium DF.

We now show how the fluid equations are obtained using
the LB algorithm, and derive the paramet@s B3, andB,

wi=Kup*kes (sound waves (36)  Which determine the long-wavelength damping and stability.
Using Eq.(40), a Taylor expansion of, yields

wherecs=(yTo)?is the sound speed, with the specific heat
ratio y=(c,+1)/c,=3/2. These results are independent of (1-w) 3 (—ADP
the direction of wave propagation, and do not depend on the f=fe > 21 ol dPf, (41)
choice of equilibrium DF. The right hand side of E@4) -
can be included using standard matrix perturbation theory, to

obtain the frequency corrections proportionajgg, B3, and whered=&/&t+§~ V. By expanding consistently in powers
Ba. of At, we obtain

w1=kuy (thermal wave (35

or

(1-0) (1-w)?
+

VIIl. THERMAL DIFFUSIVITY AND HYPERDIFFUSIVITY f=fed— > 5
w w

At?d?fed

(1-0)
Atd e+
w

Thermal waves have temperature and density perturba-
tions which are such that the pressure perturbation is zero.
By considering the damping of thermal waves with zero
background flow, we findo= —i y,k? where

_ _ 2 _ 3
(1-0) (1-w) +(1w§)) }Mgdsfeq’ )

6w w?

. neglecting terms of ordekt®.
X2=3B2To- (37) We then obtain the fluid equations in the form given by

. . . . Eq. (14) with the definitions
By comparison with solutions of the Navier-Stokes equa- a. (14

tions, we identify y, as the thermal diffusivity. Since 1 1

vyl x>,=3, the thermal diffusivity is positive whenever the 2:(—— —)At, (43)
viscosity is positive. This ratio, the Prandtl number, would © 2

be closer to realistic values for diatomic gases if a more 5

complicated equilibrium DF were used, which will be the o (i—l) LL E}mz (44)
subject of another paper. Bs= ® w 6 '

A perturbation calculation including thé; and 8, terms
in Eq. (34) can be carried out, as with the shear wave. The 1 3 3/1 2 7/ 1
frequency correction proportional t8; is zero. The next Ba=||—1] +=|—1| +=|——1]+ =|At3
L ; ' ) 2\w 12\ w 24
frequency correction i&,= —i y4k", wherey, is defined as (45)
the hyperdiffusivity and is given by

5 which can be compared with E¢L5). From this point, the
Xa=— §,B4T0(1— To), (38) long-wavelength analysis is the same for both algorithms; in
particular, the viscosity is proportional ®, and the hyper-
viscosity is proportional to-3,.
The viscosity is positive whew<2. We can choose so
that B, and the viscosity are small: with

which is positive for G<Ty<1.

A thermal wave with nonzero background flow was also
considered. Although the expression for the flow-velocity-
dependent thermal diffusivity is complicated, the result can

be stated simply. In order for the thermal diffusivity to be w=2-¢, (46)

positive, the Mach number must be less than a critical value h h

M., which depends on temperature. For9H,<0.8, for  Wheree<1l, we have

example, the critical Mach number is in the range 0.48

il ! s g Bo=eAt/d, Bi=At26, Bu~—eAtd24. (47)
<0.62.

Note that— 8,4, which is proportional to the hyperviscosity,
is also small when the viscosity is small. We take this as an
indication that short waves generated by nonlinearity may be
unstable using the LB algorithm.

This is the most important difference between the AOR
and LB algorithms, sincg, does not go to zero wheg,

IX. COMPARISON WITH THE LATTICE BOLTZMANN
METHOD

The LB algorithm is as follows: givem(i,E,t—At), the
advected distribution function is

f, (X,6)="f(X—CAt,E,t—At), (39 goes to zero using the AOR algorithm; see E2P). When
the viscosity and thermal diffusivity are very small, short-
and the collision step is given by wavelength numerical instabilitites will be effectively
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damped using the AOR algorithm, but not using the LB al-
gorithm. Thus we expect the AOR algorithm to be numeri-
cally more stable than the LB algorithm, and this is evident
in the simulation results described in Sec. XI.

X. SHORT-WAVELENGTH STABILITY

We now consider the stability of the basic AOR algo-
rithm, [Egs. (2)—(4)] to perturbations with short wave-
lengths, assuming zero unperturbed flay=0, and propa-

gation in thex direction. We usd =f,+ f, wheref is the 0 20 40 80 100 120
equilibrium DF for uniform density and temperature, and X
f1(x,G,t,) < \" exp(kx). Stability requires 01000 (b)
N<1. (48 . 1
Then we have ! ]
> Y(f1—f1,)=0, (49) ]
Cc
0.0999 .

where the perturbed equilibrium DF is given by Eq.(26)
and the perturbed advected DF is

@ l-«a
fi,="71 Kexp(—i@cx)+ (—Az—)exp(—Zicx)},

(50) 4.0x10°

where® =kAx, Ax is the grid spacing, and, is now nor- !
malized toAx/At, whereAt=t,,,—t, is the time step. In 0.0,
the following, we consider only the shortest possible wave- /
length,kKAXx= .

6 XA . g
For transverse modeg;=c,, and we obtain the disper- —4.0<10 0 20 40 60 80 100 120
sion relation X
5 FIG. 1. (a) Transverse velocity as a function gffor a shear
N —aph+a—1=0, (51) wave, using the AOR algorithn{b) Time dependence of the am-
plitude of the shear wavéc) Temperature perturbation due to heat-
where ing by a shear wave.

p=2, CiF[Bo+3ToDol(—1)%=1-2T,, (52

c XI. SIMULATION RESULTS USING THE LATTICE4 CODE
where By and D are given by Eqs(23) and (24) with £ We have written a computer codesTTICE4, which uses
=&,. These modes are stable for@,=<1. the AOR algorithm and, optionally, the LB algorithm, in

For longitudinal modes\ is again determined by Eq. order to verify the stability of the AOR algorithm and to
(51), where now is an eigenvalue of the matrix, where compare the algorithms. The initial conditions for the results
given below correspond to the types of waves we have dis-
cussed above. Periodic boundary conditions were used. The

hijzzé $igiFo(—1)%, (53 computed fluid moments are analyzed by fitting them to
propagating waves, in order to determine the phase velocities
with g;=1, g,=[By+3ToDolcx andgs=(dF 4/ 3E)/Fo. and damping rates. The Mach number is defined in terms of

The matrixh has a simple block structure: the eigenvaluesthe unperturbed flow velocity and temperaturév
which correspond to nonzerp, and & are stable for =ug/(yTo)Y2 The overrelaxation parameter was deter-
0=<Ty=<1. The eigenvalue which corresponds to nonagro mined froma=(4/3)(1- B,)/(1—(2/3)B,), with B, being
is stable ifT,=3%. We thus obtain the temperature range foran input parameter. The spatial coordinates were normalized
stability; so thatAx=1. For most of the cases discussed below, the

wave number wak=0.049, for which the wavelength is
1/3<Typ<1. (54)  equal to the length of the simulatiob=128.
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Figure 1 shows the transverse velocity and the tempera-
ture perturbation, obtained using the AOR algorithm, for a
sinusoidal shear flow convected by a uniform flow at Mach
0.2, for T;=0.4. We setB,=0, so the viscosity should be
zero; the wave is damped very slightly by hyperviscosity.
The initial rapid damping is due to the fact that only one past
time is available for the first time step, so the parameter
must be set equal to unity for the first step; a few time steps
are required before the damping rate predicted for the AOR
algorithm is achieved. The very small temperature perturba-
tion shown is due to hyperviscous heating. The dotted curves
show the fitted sinusoidal waves with twice the wave num-
ber, which is consistent with the heating being nonlinear in
the velocity derivatives.

When the LB algorithm is used, shear waves are unstable, 0.1002
as shown in Fig. 2, for the same parameters used in Fig. 1.
The growing short wave temperature perturbations cause the
shear wave to break up, starting at around the last time
shown.

Shear waves simulated using the AOR algorithm with dif-
ferent wave numbers were used to fit the damping Fate

0.0998

I'(k) = v,k?+ v k* (55)

for To,=0.4, M=0.1 and two different values of,. The 0'09940 80
viscosity v, and hyperviscosityr, agree reasonably well
with the analytical result$Egs. (30), (31), (32), and (29)].
For 8,=0.10, the code results ang=3.96<10 2 and v,
=6.3x10 2, to be compared with the analytical results
=3.95x10 2 and v,=7.7x10 2. For 8,=0.01, the code
results arev,=3.98<10 % and »,=9.2x 10 2, to be com- :
pared with the analytical results,=3.95<10 2 and v, 00k
=9.8x10 2,

The viscosity was determined for different Mach num-
bers, for two different values g8,, for To=0.4. The Mach
number dependence agrees reasonably well with (&2). :
For 3,=0.10, we findv,(M)=0.042(1.0-0.48V1?), to be -3.0x103
compared with the analytical results,(M)=0.040(1.0 0
—1.25M?). For ,=0.01, we find v,(M)=0.0044(1.0
—0.45M 2), to be compared with the analytical result FIG. 2. (a) Transverse velocity as a function gffor a shear
v,(M)=0.004(1.0- 1.25V12). wave, using the LB algorithmb) Time dependence of the ampli-

The damping rates for thermal waves convected by a unitude of the shear wavéc) Temperature perturbation due to heating
form flow at Mach 0.1 forT,=0.4, using the AOR algo- by the shear wave, showing t.he growth 0}‘ unstable short-
rithm, were calculated for different values g, and fitted ~Wavelength temperature perturbations for later times.
to

3.0x107

I

100 120

T(K)= xok?+ x4k*. (56)  thermal diffusivity is very small, and for shorter wave-
lengths. This may be the cause of the instability which
The thermal diffusivityy, and hyperdiffusivityy, agree rea- breaks up shear waves, when using the LB algorithm, as
sonably well with the analytical results neglecting finke  shown in Fig. 2. That is, the temperature perturbation gener-
corrections[Egs. (37) and (38)]. For 8,=0.10, we findy, ated by heating is unstable.
=1.2x10"? and y,=5.6x10 2, to be compared with the The dispersion curves for small amplitudep,(pg

analytical resultsy,=1.3x102 and y,=7.7x10 2. For  =0.01) sound waves were determined for two different tem-
B>=0.01, we findy,=1.1x10 3 andy,=4.6x10 2, tobe  peraturesT,=0.35 and 0.45, and for flow velocities,, =
compared with the analytical results=1.3x10"2 and y, —0.15, 0.0, and 0.15, using the AOR algorithm. The wave
=9.8x10 2. frequency was fitted to a function of the wave number,

When the LB algorithm was used, thermal waves were
found to be generally unstable, with the temperature and
density perturbations growing in time, especially when the w=Kkug+ kcg+ 85k, (57
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ness. The leading order effects of discreteness appear as vis-
cosity and thermal diffusivity, and are similar to real gas
dissipation effects, which are a result of nonzero mean free
path. The size of these dissipation effects is controlled by the
advection overrelaxation parameter and can be made ar-
bitrarily small. Higher-order effects of discreteness appear as

-01g E anomalous dispersion, and as hyperviscosity and hyperdiffu-
0 20 40 60 80 100 120 sivity, which have a stabilizing effect in the AOR algorithm
(b) X which is absent in the LB algorithm, when the viscosity and
002 ) thermal diffusivity are very small.

The damping rates of shear waves and thermal waves in
the simulated fluid were used to determine viscosity, thermal
] diffusivity, hyperviscosity, and hyperdiffusivity. A reason-

002E ably good agreement with analytical predictions was ob-
tained. Also, the anomalous dispersion of sound waves, de-
0 20 40 Gox g 100 120 termined by measurements of the phase velocity, was shown
to be very small, and sound waves were shown to steepen, in

FIG. 3. Steepening of a large amplitude sound wave, ShOWingigreement with gas dynamic theory.

(a) the density perturbation ari8) the temperature perturbation, 8 | attice methods usually simulate a fluid with unrealistic
E::Z“ons ofx for different times, up to the predicted steepening e ies resulting from the use of a lattice, i.e., lattice ar-
: tifacts [10]. In order not to confuse the stability issue, we
used a type of collisional equilibrium which has exactly zero
8rtifacts at the Euler level of description, i.e., the Euler equa-
tions are obtained exactly in the limit of zero time step. This
with relative errors less than 6.0~ 4. The anomalous dis- €auilibrium has a s.imple analytical'form yvhich is possible
persion term proportional t6, gives a very small correction because _of the ch0|ce_of the four-dlm_en5|onal face-ce_ntered
to the phase velocity, of about3L0~3. When the LB algo- hypergublc(FC_H(_:) lattice [8]_,_ and which makes poss!ble
rithm was used, sound waves were found generally to panalytical predictions of stability to long wave perturbations.
unstable, for most of the parameters used in these tests. Some lack of realism remains, however, because of the

As a further test of the realism of the simulation, a largerchoice of this equilibrium and the use of only three energy
amplitude p;/po=0.1) sound wave propagating upstreamstates: the specific heat ratio s not , the viscosity and
through a uniform flow in the-x direction at Mach 0.2 with  thermal diffusivity decrease with increasing Mach number,
temperaturel,=0.4 was used. It was found to steepen asand the Prandtl number is unrealistically large. These unre-
expected from gas dynamic theory. An estimate of the steemlistic features can be eliminated by a different choice of
ening time t~1/(ku,), is about 250 time steps. In Fig. 3 we collisional equilibrium and the inclusion of more energy
show the density and temperature waves every 50 time stepstates, which will be the subject of a future paper.
as calculated by the code, for 250 time steps. The sound The dependence of the wave damping rates, on back-
wave becomes very steep in that time, as expected from gagound temperature, and flow velocity, is a consequence of

0.0

wherecs=(yT,)*?is the sound speed, a is the anoma-
lous dispersion coefficient. The measured specific heat rati
is in excellent agreement with the theoretical value 1.5,

dynamic theory. the particular collisional equilibrium distribution function
used. When this is given by EQg&l9), (21), and (22), the
XIl. DISCUSSION AND CONCLUSIONS requirement of positive wave dampirithe most restrictive

eing the thermal wayeequires the Mach number to be less

We have presented an algorithm for compressible flui han 0.48, for temperatures in the range<0%,<0.8, for

simulations, which is a modification of the standard lattice ; : :
Boltzmann algorithn{1]. We have used theaTTICE4 code example. The temperature is only rqu]red to be in the range
to demonstrate the greatly improved numerical stability ob-1/3<To<1, for short wavelength stability. ,
tained with our algorithm, compared with the standard algo- Latticeé methods should be fast, compared with conven-
rithm. tional methods used in computational fluid dynamics, since
The AOR algorithm is similar to the Chapman-Enskogthey involve relatively simple operations. They are highly
method for deriving fluid equations from the Boltzmann Parallel when implemented using domain decomposition on
equation. The Boltzmann equation is not used, however; thugassively parallel computers, because communication be-
it is different from the LB method, which uses a discretizedtween processors is only required for particle advection near
form of the Boltzmann equation. At each time step the ve-subdomain boundaries. The coderTicE4, which was used
locity distribution function is set equal to the collisional to obtain the simulation results given in this paper, uses do-
equilibrium distribution function. With an appropriate choice main decomposition and the message-passing interface
of the equilibrium distribution function, the fluid variables (MPI) [11], a standard method for interprocessor communi-
evolve like solutions of the ideal fluid equations, except forcation. Figure 3 was made using the data calculated on a
the small effects of nonzero spatial and temporal discretetinux Beowulf cluste{12] using 16 processors.
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We believe that this technique would be useful in simu-lations, not just the simple wave tests we have done. This
lating compressible fluid flows under conditions where thewill be the focus of future work.
effects of viscosity and thermal diffusivity are very small.
The most limiting feature is the limitation to Mach numbers ACKNOWLEDGMENTS
less than unity; this will be addressed in future work. In  We have benefitted from discussions with K. Molvig on
order to show that our algorithm is useful in real engineeringhe LB algorithm. This work was supported by internal GA
problems, it must, of course, be tested in engineering simwuesearch funds.
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